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Transformation optics (TO) facilitates flexible designs of spatial modulation of optical materials via coordinate
transformations, thus, enabling on-demand manipulations of electromagnetic waves. However, the application of
TO theory in control of hyperbolic waves remains elusive due to the spatial metric signature transition from
(�,�) to (−,�) of a two-dimensional hyperbolic geometry. Here, we proposed a distinct Pythagorean theorem,
which leads to establishing an anisotropic Fermat’s principle. It helps to construct anisotropic geometries and is a
powerful tool for manipulating hyperbolic waves at the nanoscale and polaritons. Making use of absolute instru-
ments, the excellent collimating and focusing behaviors of naturally in-plane hyperbolic polaritons in van der
Waals α–MoO3 layers are demonstrated, which opens up a new way for polaritons manipulation. ©2022Chinese
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1. INTRODUCTION

Hyperbolic media feature extreme optical anisotropy where the
component of its permittivity tensor can have different signs,
which is widely studied spanning from (known as) metamate-
rials [1–5] to natural optical crystals [6–12]. Those properties
will allow the unbounded hyperbolic dispersions with large mo-
mentum of waves, and, hence, the high confinement of light at
the nanoscale for enhanced light–matter interactions. As a re-
sult, hyperbolic metamaterials [4,5], artificial materials made of
metal-dielectric multilayers or plasmonic nanowire arrays, are
exploited for numerous applications including negative refrac-
tion [2,4,5], subwavelength imaging [1,13,14], and enhanced
spontaneous emission [15,16]. However, the substantial plas-
monic losses are inevitable. More recently, the hyperbolic re-
sponse is found in bulky crystals and thin van der Waals
(vdW) films, such as hexagonal boron nitride (hBN) [6–8] and
α-phase molybdenum trioxide (α–MoO3) [9–12] due to their
strong excitation of optical phonons, forming hyperbolic pho-
non polaritons (PhPs). This kind of hyperbolic response, in
principle, is immune from Ohmic loss as a result of the absence
of electron–electron scattering and offers tremendous opportu-
nities of nanoscale manipulation of light.

For further controls, one can make the structure of natural
crystals. For instance, the structured array of deeply subwave-
length hBN gratings [6,7] can allow the in-plane hyperbolic

dispersions, facilitating directional propagations of otherwise
isotropic polaritons at the interface. Flexible switching of those
directions as well as driving hyperbolic to elliptic topological
transition can be realized [17,18] using the twisted bilayer
configurations. Moreover, the α–MoO3 nanocavities for pre-
described field patterns and prolonged lifetime are observed
in tailoring the orientation of geometric boundaries [19].
Applications of focusing, wavefront engineering, and electri-
cally dynamical modulation of polaritons are also explored
[20–23]. In general, those cases show that structuring aniso-
tropic media can supply even more powers for extreme and
exotic light manipulations, thus, in this paper we provided a
generic and systematic approach of such structuring deriving
from transformation optics (TO) theory for the on-demand
designer polaritonics.

TO [24–26] applies spatial coordinate transformations to
design spatially varying and anisotropic material composites
based on the form invariance of Maxwell’s equations, enabling
various fascinating metaphotonic applications, such as invisibil-
ity cloaks [27], field rotators [28], cosmic string simulators
[29], and mimicked Hawking radiation [30]. However, spatial-
transformation-based TO theory has not been well constructed
for hyperbolic media because the spatial metric signature expe-
riences a transition from (�,�) to (−,�), which introduces the
“pseudotime coordinate,” causing the effect in similar to a
space–time exchange [31,32]. A recent work [33] introduces
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two-dimensional (2D) Clifford algebra to build a theory of hy-
perbolic conformal TO, but it requires a coordinate weight ra-
tio of space geometry to be 1, which is isotropic to some extent,
limiting the material realizability in experiments.

Here, we propose a new Pythagorean theorem in an aniso-
tropic system and build up an anisotropic Fermat’s principle
which provides guidelines for polaritons and nanoscale extreme
light manipulation via reshaping the space geometry to hyper-
bolic. We apply this theory to the absolute instruments [34–37],
and specifically, we demonstrate the Luneburg lens (LL) for in-
trinsic collimation and Maxwell’s fish-eye lens (MFL) for inter-
face focusing of hyperbolic PhPs in α–MoO3 layers. Since our
theory requires on-site and local modulation of polaritonic char-
acteristics, we show that the simple spatial modulation of thick-
ness of the biaxial α–MoO3 would be enough to implement the
proposed anisotropic Fermat’s principle within reasonable exper-
imental efforts in the future [38,39].

2. THEORY OF ANISOTROPIC FERMAT’S
PRINCIPLE

We first discuss our approach towards the TO theory for hyper-
bolic media. In the following and unless otherwise specified,
without loss of generality, we focus on the 2D transverse mag-
netic (TM) polarization, which is usually much more confined.
Assume a space filled with the following material:

ε � μ �

2
64
1 0 0

0 1 0

0 0 n2�x, y�

3
75, (1)

where the z component of the permittivity and permeability
follows the profile n�x, y� with respect to Cartesian coordinates
x and y depicted as the red square grids as shown in Fig. 1(a).
We here consider a mapping that can afford the transformation
towards an anisotropic space, defined as

x � ffiffiffiffiffi
μy

p
x 0, y � ffiffiffiffiffi

μx
p

y 0, (2)

where μx and μy are real constants that control the deformation
of coordinates. According to the TO recipe [24–26], we can
easily obtain material parameters in the �x 0, y 0� coordinate,
shown schematically as the red rectangular grids in Fig. 1(b)
from Eq. (1), written as

ε 0 � μ 0 �

2
66664

ffiffiffiffi
μx
μy

q
0 0

0
ffiffiffiffi
μy
μx

q
0

0 0
ffiffiffiffiffiffiffiffiffiμxμy

p n 02� ffiffiffiffiffiμyp x 0,
ffiffiffiffiffi
μx

p
y 0�

3
77775: (3)

From this equation, we know that ε 0z � n 02 ffiffiffiffiffiffiffiffiffiμxμy
p ,

μ 0
x �

ffiffiffiffi
μx
μy

q
, and μ 0

y �
ffiffiffiffi
μy
μx

q
for TM polarization. The physical

space after the mapping of Eq. (2) can be expressed by a
complex number,

w 0 � ffiffiffiffiffi
μy

p
x 0 � i

ffiffiffiffiffi
μx

p
y 0: (4)

The use of a complex number has geometrical significance: the
modulus jw 0j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w 0� · w 0p

gives a generalized radial coordinate,

r 0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μyx 02 � μxy 02

q
, (5)

which obeys a new Pythagorean theorem. Euler’s formula form of
the complex number w 0 � r 0eiθ 0 � r 0 cos θ 0 � ir 0 sin θ 0 results

in cos θ 0 �
ffiffiffiμyp x 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μyx 02�μx y 02
p and sin θ 0 �

ffiffiffiffi
μx

p
y 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μyx 02�μx y 02
p .

Obviously, the constructed anisotropic space depends on the
values of μx and μy. The new space can be freely shaped into an
elliptic geometry if μx > 0, μy > 0. However, it is not able
to obtain a hyperbolic medium from Eq. (3) as the material
parameters are all in the form of square roots, which cannot
give negative values. Besides, the complex number of Eq. (4)
would lose its meaning if μxμy < 0. This weird phenomenon is
demonstrated in Fig. 1(c). For instance, setting μx � 1 (a map-
ping where the y-axis coordinate will not change), the relation-
ship of the x-axis coordinate versus μy is plotted in Fig. 1(c).
When the value of μy varies from positive to negative, the trans-
formation mappings of x � ffiffiffiffiffiμyp x 0 (illustrated as black stipple
lines with x being 2, 1, −1, − 2, respectively) will jump from
the Re�x 0� − μy plane to the Im�x 0� − μy plane. This imaginary
coordinate actually changes the original space geometry where
the conventional TO is defined. A recent work [33] defined a
conformal ultrahyperbolic geometry using 2D Clifford algebra.
Nevertheless, the weight ratio of coordinates is restricted as 1,
i.e., the conic angle of asymptotes is always 90°, this isotropic

Fig. 1. Schematic of a transformation relation. (a) The original
space, which corresponds to the isotropic space w � x � iy (the
red square grids). (b) The physical space, which corresponds to the
anisotropic space w 0 � ffiffiffiffiffiμyp x 0 � i

ffiffiffiffiffi
μx

p
y 0 (the red rectangular grids).

(c) The transformation relations of Re�x 0� − μy with μx � 1 and
μy ≥ 0 will be changed to Im�x 0� − μy when μy < 0 with μx � 1
and x � −2, −1, 1, and 2, respectively (black stipple lines). The con-
tour curve of r 0 � 1 relevantly changes from hyperbola to parallel
straight lines to an ellipse with μy from −3 to 0 to 3.
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geometry is quite confined, and the corresponding materials are
not easy to achieve in experiments.

Next, we show that the mapping of Eq. (2) can be used to
define a more general geometry, which accommodates both hy-
perbolic and elliptic cases, and establish an anisotropic Fermat’s
principle theory, which is easier for further implementation.

From Eq. (2), the line element in the anisotropic space can
be defined as

ds 02 � n 02dl 02 � n 02�μydx 02�μxdy 02�� ε 0zμ 0
ydx 02� ε 0zμ 0

xdy 02,

(6)

where dl 0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μydx 02 � μxdy 02

q
is the infinitesimal increment

of the anisotropic geometrical path length, consistent with the
generalized radial coordinate of Eq. (5). This generalized system
actually conforms to an anisotropic Fermat’s principle. In ad-
dition, we can find a perfect analogy of this anisotropic Fermat’s
principle in mechanics based on the optical-mechanical analogy
theory [37,40] (see Appendix A). The trajectory of the particle
with unit mass, total energy E, and potential U in mechanics
is the same as the trajectory of light rays in the refractive
index n�r 0�,

n�r 0� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�E − U �

p
, (7)

where it is noted that the radial coordinate r 0 of n�r 0� should be
the generalized one, that is, Eq. (5) in this anisotropic system.

Thus, from Eq. (6), we can rewrite the material parameters
of the anisotropic space as

ε 0 � μ 0 �

2
64
μx 0 0

0 μy 0

0 0 n 02�r 0�

3
75, (8)

where ε 0z � n 02, μ 0
x � μx , and μ 0

y � μy for TM polarization.
The refractive index n 0 � n 0�r 0� is a function of Eq. (5),
and the factors μx and μy are exactly the in-plane permeability
components μ 0

x and μ 0
y of the anisotropic space, respectively. In

addition, the angular frequency ω and wave-vectors kx and ky
satisfy the following dispersion relation:

ω2 �
�c
n
k
�
2 � c2

n2

�
k2x
μy

� k2y
μx

�
: (9)

This relationship is reminiscent to the isofrequency surface
of uniaxial anisotropic metamaterial for the TM-polarized
waves [4], only in our case, here, is a 2D model, where c is the
speed of light in free space. Note that a similar process can be
extended to 2D transverse electric (TE) polarization, requiring
the gradual distribution of permeability, which is relatively dif-
ficult in practice, although our theory can be applied well.
Besides, we can also take the z coordinate into account to con-
struct a 3D space, but it would be too complex and unnecessary
for further study as we focus more on the in-plane effects. Based
on the anisotropic Fermat’s principle, we can then construct the
space into hyperbolic geometry as known from Eq. (8).

The hyperbolic media require μxμy < 0. This will force that
the line element ds 02 � −n 02jμyjdx 02 � n 02μxdy 02 (if μy < 0 )
has one negative sign of the space metric. It is quite similar
to an arbitrary (1� 1)-dimensional space–time metric, such
as ds2 � −gxxdx

2 � gttdt
2. Here, we consider the negative

space coordinate of the hyperbolic metric as a pseudotime co-
ordinate, which suffers a signature transition [30–32] from
(�,�) to (−,�). It reveals that our theory may provide a
new insight for studying various curved space–time of general
relativity from studying hyperbolic spaces.

We draw the curves of r 0 � 1 with the value of μy changing
from −3 to 3 (μx � 1) as shown on grating-like yellow planes in
Fig. 1(c). An obvious change in the shape from hyperbola to
ellipse can be seen clearly, and thereinto, a critical shape of two
straight lines emerges at μy � 0. These yellow planes are sup-
posed to be the new anisotropic spaces, and the original space
appears at μy � 1. This phenomenon is similar to the topologi-
cal transition occurring in the 2D vdW materials, such as gra-
phene strips [41] and α–MoO3 [17]. The dispersion curves of
two layers of α–MoO3 twisted with different angles vary from
hyperbola to ellipse, experiencing a transition stage, which
forms a canalization state [17]. We next focus on the hyperbolic
part and apply our method to the absolute instruments, such as
LL and MFL.

3. DESIGN AND SIMULATIONS FOR
CONTROLLING HYPERBOLIC VAN DER WAALS
POLARITONS WITH COLLIMATING AND
FOCUSING EFFECTS

A. Collimating Effect
Suppose the original space follows an LL device with refractive
index n�r� �

ffiffiffiffiffiffiffiffiffiffiffi
2 − r2

p
where the radius of the device is 1.

Here, without loss of generality, we set μx � 1, μy � −1 in
the new space. From Eqs. (5) and (8), we know that

εz � �n�r��2 � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x2 � y2

p
�2

q
�2. It should be noted

that the values of μx and μy can be arbitrarily selected to con-
trol the lens to form unconventional shapes. As known from
Fig. 1(c), the lens boundary r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x2 � y2

p
� 1 is an open

and infinite hyperbola. As illustrated in Figs. 2(a) and 2(d),
the underlying purple profile represents the refractive index dis-
tribution n�r�, which is uniform outside the lens boundary
(black solid curves) and gradient inside. The range of the re-
fractive index can go to infinity but is limited by us to less than
5 in the plot. The LL is a symmetric omnidirectional lens that a
point source placed at the rim of the LL forms a collimated light
on the other side. The geometrical results show that the upward
light rays are emitted from the point source (in yellow) at the
upper boundary of the hyperbolic lens at (0,1) or �1, ffiffiffi

2
p �, and

propagate as straight lines in the background. Interestingly,
after experiencing the same amount of time, the light rays will
form a concave wavefront. The downward light rays entering
the lens are bent by the refractive index, which is analogous to
the effect that a hyperbolic Hooke’s potential U � r2

2 � −x2�y2

2

applied to particles [see Eq. (7) with total energy E � 1], reach-
ing the lower boundary with the same direction right before
forming the parallel rays and going out of the lens. The isophase
plane in the lower background is parallel to the tangent line of
the lens boundary, which passes through the source point. The
same phenomena occurred in the wave patterns [Figs. 2(b) and
2(e)]. Obviously, our theory can be used to design an arbitrarily
shaped hyperbolic LL with their property maintained and
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further applied to other devices with different refractive index
profiles.

With these numerical examples demonstrated, we now dis-
cuss possible experimental demonstrations of our theory in
controlling hyperbolic PhPs of α–MoO3 flakes for nontrivial
integrated devices. Bearing the essential concept of index dis-
tributions in mind, importantly, we should seek the local
modulation of polariton propagation characteristics. For this
purpose, we, here, take advantages of large sensitivity of those
highly confined polaritons with the ambient background and
the thickness of vdW flakes and, hence, consider the waveguide
model composed of three layers: air (z ≥ d ), α–MoO3 slab
with finite thickness (0 ≤ z ≤ d ), and SiO2 substrate (z ≤ 0)
as shown in Fig. 3(b).

The field propagates inside the α–MoO3 slab and exponen-
tially decays outside, satisfying Maxwell’s equations,�

∇ × ~E � iωμ0 ~H

∇ × ~H � −iωε0ε̂ ~E
: (10)

The permittivities of air, α–MoO3, and SiO2 are ε1, ε̂2, and
ε3, respectively. The principal components εi of the permittiv-
ity tensor ε̂2 of α–MoO3 can be calculated by a Lorentz model:

εi � εi∞
�
1� ωi

LO
2−ωi

TO
2

ωi
TO

2−ω2−iωΓi

�
, i � x, y, z. Parameter εi∞ is the

high-frequency dielectric constant. Parameters ωi
LO and ωi

TO

are the longitude and transverse optical phonon resonance
frequencies, respectively. Γi is the broadening factor of the
Lorentzian line shape. The relation between real parts of the

permittivity of α–MoO3 and frequency is illustrated in Fig. 7
(Appendix B), and the corresponding parameters are listed in
Table 1 (see Appendix B, where we refer to the data in
Refs. [9,11]). The different in-plane anisotropic polaritonic
wave modes can be easily excited by changing the operating
frequency.

In biaxial materials, TE and TM guided modes usually can-
not decouple. However, the isofrequency surface of TE modes
is a closed surface with finite wave vectors, whereas we focus
mainly on opening hyperbolic surface, which requires large
wave vectors, so the propagation of PhPs is dominated by
the TM modes [9].

Suppose the in-plane PhPs propagate along the [001]
direction, i.e., the y axis; then, the electric and magnetic fields
can be expressed as ~E�y, z, t� � ~eE�z� exp�iqy − iωt� and
~H �y, z, t� � ~hH�z� exp�iqy − iωt� [11] where the in-plane
propagation constant is q � neff k0, with neff being the effective
refractive index and k0 being the vacuum wave vector.
Considering the TM modes (with only field components of
Ey, Hx , and Ez) from Eq. (10) by solving the Helmholtz equa-
tions and matching the continuous boundary conditions of Ey
and Hx at the boundaries z � d and z � 0, we obtain the
dispersion relation (see Appendix C),

kzd � arctan

�
α1
ε1

εy
kz

�
� arctan

�
α3
ε3

εy
kz

�
� mπ, (11)

where kz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20εy −

εyq2

εz

q
and α1,3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − k20ε1,3

p
> 0 are the

z components of photon momenta in α–MoO3, air, and SiO2,
respectively. d denotes the thickness of the α–MoO3 slab.
m � 0, 1, 2… are the orders of the TM modes. Figure 3(c)
shows the effective refractive index neff of the first five TM-po-
larized guided modes as a function of the thickness d obtained

Fig. 3. (a) Schematic of the 2D model; (b) schematic of the 3D
waveguide model; (c) relation between the effective refractive index
neff and the thickness d obtained from the dispersion relation Eq. (11).

Fig. 2. Hyperbolic Luneburg lens with a collimating effect. (a), (d),
(b), (e), (c), and (f ), respectively, are the geometrical light behaviors,
electromagnetic wave pattern [Re�Ez�], and polaritonic wave pattern
[Re�Ez�] from the point source at (0,1) or �1, ffiffiffi

2
p �.
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from the dispersion relation of Eq. (11). The effective refractive
index has a minimum limit

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Re�ε3�

p
for the reason of the per-

mittivity of the SiO2 substrate Re�ε3� > ε1 � 1, but it has no
maximum limit. Taking practical experiments into account, the
first order (m � 0, which is plotted with a black curve in order
to distinguish with the other four modes) is only considered
because the higher modes are usually inhibited by imperfec-
tions of the sample edges and the current signal/noise ratio limi-
tation [8].

We now calculate the thickness distribution of the α–MoO3

flake for demonstration of the collimation effect of the hyper-
bolic LL in vdW polaritons. We use the refractive index of the
2D model [Fig. 3(a) where the thickness of the biaxial crystal is
infinite] as the approximation of the effective refractive index of
the biaxial slab in the 3D model [Fig. 3(b) where the thickness
of the biaxial crystal is finite]. The effective refractive index neff
of q � neff k0 can be obtained approximately from the
dispersion relation Eq. (9) of the 2D model through letting
kx � 0,

q2 � k2y � μxk20n
2 (12)

giving the results of neff � q∕k0 � ffiffiffiffiffi
μx

p
n � n�r� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x2 � y2

p
�2

q
, where μx � 1. It turns out that the ef-

fective refractive index is proportional to the refractive index
in the hyperbolic geometry obtained from our anisotropic
Fermat’s principle.

It should be noted that, we need to limit the thickness of
α–MoO3 to be relatively small to make sure that the value of
neff could be larger than the minimum limitation as shown in
Fig. 3(c), which is also consistent with the condition of large
momentum. To meet the above requirements, we choose to
multiply neff by 25 so that the propagation paths are not
affected (only the background is elevated as a whole).
Accordingly, the in-plane propagation constant changes to
q � 25neff k0. Substituting q into Eq. (11), we obtain the thick-
ness distribution d �x, y� at a large momentum approximation
as illustrated in Fig. 4(a). The color bar shows the range of
d �x, y�, which is less than 130 nm. The thickness calculation
has a certain degree of flexibility relying on the choice of the
constant, but for practical consideration, the smaller the total
thickness, the slower the change in thickness, and the fewer
high-order effects. Also, as long as the thickness varies slowly
enough, the adiabatic theorem will not be disobeyed [38].

The obtained collimating polaritonic waves are shown in
Figs. 2(c) and 2(f ). Here, the frequency of 674 cm−1 (band 1)
with εx � 8.9943� 0.0617i, εy � −8.9218� 0.2421i, and
εz � 2.8673� 0.0014i is adopted to excite the hyperbolic re-
sponse along the y axis dominated by TM polarization and

to obtain the nearly 90° opening angle with jRe�εx�j ≈ jRe�εy�j
at the same time. A dipole source is positioned at (0 μm, 1 μm)
or �1 μm,

ffiffiffi
2

p
μm� and 220 nm above the bottom of the

α–MoO3 flake. The real part of the z component of electric
fields [Re�Ez�] demonstrates the same responses as that in
the above panels of geometrical and wave optical results with
obviously long-distance collimating polaritonic waves along
corresponding directions. It may be useful for its wavefront
shaping in practical applications, such as on-chip integration
and directional energy transfer. In addition, the range of
operating frequency that our proposed model can be well ma-
nipulated is the frequency range in the middle part of RB1
(about 560–810 cm−1) and RB2 (about 865–940 cm−1)
where the in-plane dispersion of α–MoO3 is hyperbolic, and
the values of the permittivity components are not too extreme
for manipulation.

B. Focusing Effect
We further demonstrate the application of our anisotropic
Fermat’s principle theory to more functionalities to showcase
its enabling power to control the light at the nanoscale.
Maxwell’s fish-eye lens, distinguishing from the Luneburg
lens, focuses light from one point to another at the boundary.
Both collimating and focusing properties are widely studied
applications of polaritonics, whereas, our theory provides a
more precise and systematic way for implementation. The
material parameters of MFL should be εz � �n�r��2 �h

2

1��
ffiffiffiffiffiffiffiffiffiffiffi
−x2�y2

p
�2
i
2
, still with μx � 1, μy � −1. The shape of

the lens is the same as that of the hyperbolic LL, but the re-
fractive index distribution is different as shown in Figs. 5(a) and
5(d). The emitted light rays simultaneously walk along curved
lines from the source point (0, 1) or �1, ffiffiffi

2
p � (the yellow point

on the upper boundary of the lens) to the imaging point
�0, − 1� or �−1, − ffiffiffi

2
p � (the green point on the lower boundary

of the lens), experiencing the same time. The rays continue to
propagate in straight lines to the background space in the same
way as they do in the upper half-plane background and

Table 1. Parameters for Calculating the Permittivity of
α–MoO3 [9]

Parameters x [100] y [001] z [010]

ε∞ 4.0 5.2 2.4
ωLO∕cm−1 972 851 1004
ωTO∕cm−1 820 545 958
Γ∕cm−1 4 4 2

Fig. 4. Thickness distribution d�x, y� of (a) hyperbolic collimating
LL and (b) hyperbolic focusing MFL with an aerial view (left) and top
view (right).
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eventually form a series of hyperbolic isophase curves. The
same phenomena also appear in the corresponding wave pat-
terns in Figs. 5(b) and 5(e) and polaritonic wave patterns in
Figs. 5(c) and 5(f ). The simulation proceeds under the same
frequency at 674 cm−1 and the same parameters as that in the
LL. Only the thickness distribution d of the α–MoO3 flake is
different. The thickness distribution d is also less than approx-
imately 130 nm but obtained according to neff � 2

1�r2 �
2

1�
� ffiffiffiffiffiffiffiffiffiffiffi

−x2�y2
p 	

2 as shown in Fig. 4(b). Here we note that the

value of neff is infinite at areas r2 � −1 and negative at
r2 < −1. To obtain a valid thickness distribution, we set the
value of these areas of neff as a large imaginary number, which
leads to a near-zero value of d . This treatment is tricky but
reasonable because the lights are supposed to be bounded
in the region of neff > 0, and the area beyond will not affect
the light propagation. As shown in Figs. 5(c) and 5(f ), one
can see the notable wave converging at the image point and
the beautiful hyperbolic wavefront in the background areas.
This efficient multidirectional subwavelength focusing effect
is applicable to planar nano-optical devices.

Finally, we briefly discuss the influence of thickness on the
above collimating and focusing effects. The variation of the
thickness of the α–MoO3 slab does not change the open angle
(half the angle between the asymptotic lines of the dispersion
curves in momentum space) and the topological nature (i.e., hy-
perbolic or elliptic) of PhPs, and the behaviors of PhPs show a
relatively high tolerance to the thickness variation [17]. Our

models of continuously changed thicknesses (Fig. 4) also main-
tain this robustness against thickness variation as a whole. For
example, Fig. 6 displays the collimating behavior of polaritonic
waves with different maximum thicknesses of the α–MoO3 slab
(220 nm, 130 nm, and 65 nm, respectively) working at
634 cm−1. We can see that the collimating effect is still well
behaved and becomes more local with a smaller total thickness
for the reason of larger wave vectors, behaviors more remark-
able with larger thickness [few scatterings occur in Fig. 6(a) due
to the limited computational domain and computer capacity,
although they are tolerable]. The focusing effect will show the
similar phenomena, which can be simply verified by simula-
tions. We do not show more details here.

4. CONCLUSION

In this paper, we proposed a new Pythagorean theorem that
constituted an anisotropic Fermat’s principle, which provided
a systematic and novel way to manipulate polaritonic waves.
The collimating and focusing properties of LL and MFL were
perfectly demonstrated with polaritonic waves by solely adjust-
ing the thickness of the α–MoO3 flake. The possible way to
fabricate the varied thickness is by the focused ion-beam etch-
ing fabrication or the chemical vapor deposition system for the
growth of α–MoO3. By carefully monitoring the thickness of
α–MoO3 using an optical microscope and atomic force micro-
scope, the curved surface can be made with the peeling off of
some of the α–MoO3 using the Omniprobe micromanipulator
to leave only the expected shape [9,10,17,23]. It is no doubt
easier for experiments compared with many other methods, for
example, punching holes or designing structures in substrates
or vdW materials. We provided a theory basis for designing
nanodevices. In principle, the method can be generalized to
other structures and other materials with the in-plane hyper-
bolic response by choosing appropriate hyperbolic bands, such
as the natural materials black phosphorus and Weyl semimetal
WTe2 [41]. The study of hyperbolic polaritons is of great sig-
nificance for us to understand the novel phenomena of electro-
magnetic waves at the nanoscale and the physical principles
behind them. Therefore, we expect that our paper opens up
new opportunities for manipulating, reshaping, and focusing
electromagnetic waves at a subwavelength scale [42] and have
some impacts on in-plane or on-chip optics.

In addition, curved space–time of general relativity can be
studied from a distinct view by studying hyperbolic spaces.
What is more, our anisotropic Fermat’s principle can be related

Fig. 5. Hyperbolic Maxwell’s fish-eye lens with the focusing effect.
(a), (d), (b), (e), (c), and (f ), respectively, are the geometrical light
behaviors, the electromagnetic wave pattern [Re�Ez�], and the polari-
tonic wave pattern [Re�Ez�] from the point source at (0, 1) or �1, ffiffiffi

2
p �.

Fig. 6. Polaritonic wave pattern [Re�Ez�] of the hyperbolic
Luneburg lens with a collimating effect at a frequency 634 cm−1 where
the maximum thicknesses dmax of the α–MoO3 layer are (a) 220 nm,
(b) 130 nm, (c) 65 nm, respectively.
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to the anisotropic Kepler problem (AKP) [43,44], which is an
electronic system with an electron having an anisotropic mass
tensor. The AKP possesses chaotic behavior, which makes it a
hot topic for the study of classical and quantum correspond-
ences. Thus, further research is necessary on the AKP based
on our proposed theory in the future, especially for the hyper-
bolic anisotropic cases. In a word, from our versatile approach,
distinctive insights may be inspired for studying space–time of
general relativity or anisotropic systems of other fields, such as
acoustics, classical, and quantum mechanics.

APPENDIX A: THE OPTICAL-MECHANICAL
ANALOGY OF ANISOTROPIC FERMAT’S
PRINCIPLE

We briefly introduce the optical-mechanical analogy and show
that our anisotropic Fermat’s principle leads to anisotropic dy-
namics, which is still in the framework of Newton’s law, or we
will call it the anisotropic Newton’s law.

The optical-mechanical analogy is the analogy between
Fermat’s principle of the shortest/longest time and the
Maupertuis principle of least action. These two principles all
obey the variational principle and are thought to be the specific
formulations of Hamilton’s more general principle [40].

With the help of variational calculus, Fermat’s principle can
be expressed with the Euler–Lagrange equation or Hamilton’s
equation. One can derive the Euler–Lagrange equation for the
extremal trajectory as [37]

d

dξ

∂L
∂~v

� ∂L
∂~r

, (A1)

where L is the Lagrangian. ~r is the position, parameterized by ξ.
~v is velocity, the derivative of ~r with respect to ξ with ~v � d~r

dξ.
The line element of Eq. (6) can be expressed in terms of the

Lagrangian as

ds � n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μydx2 � μxdy2

q
� n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μy

dx2

dξ2
� μx

dy2

dξ2

s
dξ � Ldξ:

(A2)

The Lagrangian is thereby anisotropic and expressed as

L � n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μy

dx2

dξ2
� μx

dy2

dξ2

s
� n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μyv2x � μxv2y

q
�

ffiffiffiffiffiffiffiffiffi
n2v2

p
:

(A3)

The parameter ξ plays the role of time but has the dimen-
sion of length, which can be physically interpreted as “optical
action.” For ray trajectories, the parameter ξ satisfies

dξ � dl
n
: (A4)

It is a vital stepping parameter for optical-mechanical anal-

ogy. dl �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μydx2 � μxdy2

q
is the infinitesimal increment of

the anisotropic geometrical path length. From Eq. (A4), the
corresponding “speed” is obtained as

v �




 d~rdξ





 � n




 d~rdl





 � n: (A5)

Thus, v � n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μyv2x � μxv2y

q
. Then, substituting the

Lagrangian Eq. (A3) into the Euler–Lagrange Eq. (A1), we have

d2~r
dξ2

� ∇ 0n2

2
: (A6)

It is anisotropic Newton’s law for a particle with unit mass
moving in time ξ with potential,

U � −
n2

2
� E , (A7)

where E is the total energy of the particle. When μx � μy � 1,
all quantities and equations above will degenerate to the regu-
lar forms.

Therefore, it establishes the relation between anisotropic
Fermat’s principle and anisotropic Newton’s law, The operation
∇ 0 means that Newton’s law can be extended to a more general
scope to describe the motion in anisotropic backgrounds. It
indicates that our theory can be extended to many other aniso-
tropic systems, such as the AKP (to study the chaotic behavior
of particles).

APPENDIX B: PARAMETERS OF
PERMITTIVITIES OF α–MoO3

There are three Reststrahlen bands (RBs) (shaded in different
colors in Fig. 7) of α–MoO3 in the mid-infrared range of
545 to 1010 cm−1: bands 1–3 originate from the in-plane pho-
non mode along the [001] (y-axis), [100] (x-axis), and [010]
(z-axis) crystalline direction, respectively [9]. In bands 1 and
2, ranging from 545 to 851 cm−1 and 820 to 972 cm−1, in-
plane hyperbolic responses with highly confined ultrahigh wave
vectors exist with Re�εy� < 0, Re�εx� ≠ Re�εz� > 0, and
Re�εx� < 0, Re�εy� ≠ Re�εz� > 0, respectively. In band 3, fre-
quency ranges from 958 to 1010 cm−1, where there are
Re�εz� < 0, Re�εx� ≠ Re�εy� > 0, and the in-plane dispersion
is elliptical.

Fig. 7. Real-part permittivities of α–MoO3 where three different
Reststrahlen bands of α–MoO3 are shaded in different colors.
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APPENDIX C: CALCULATION OF THE
DISPERSION RELATION EQ. (11)

Considering the TMmodes (with only field components of Ey,
Hx , and Ez [11]) and substituting the electric and magnetic
fields ~E�y, z, t� � ~eE�z� exp�iqy − iωt� and ~H �y, z, t� �
~hH �z� exp�iqy − iωt� into Maxwell’s equation Eq. (10), we de-
rive the following equations:

iqEz −
∂Ey

∂z
�−iωμ0Hx ,

−
∂Hx

∂z
�−iωε0εyEy,

iqHx �−iωε0εzEz , (C1)

which give the Helmholtz equation,

∂2Hx

∂z2
�

�
k20εy −

εyq2

εz

�
Hx � 0, 0 ≤ z ≤ d : (C2)

The equations in the other two layers are similarly ex-
pressed as

∂2Hx

∂z2
� �k20ε1 − q2�Hx � 0, z ≥ d , (C3)

∂2Hx

∂z2
� �k20ε3 − q2�Hx � 0, z ≤ 0: (C4)

From the above Eqs. (C2)–(C4), we suppose

kz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20εy −

εyq2

εz

q
and α1,3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − k20ε1,3

p
, which are the

z-components of photon momenta in α–MoO3, air, and
SiO2, respectively. The solutions of the above equations are

Hx �

8><
>:
�A cos�kzd ��B sin�kzd ��exp�−α1�z −d��, z≥d ,
A cos�kzz��B sin�kzz�, 0≤ z≤d ,
A exp�α3z�, z≤0,

(C5)

where A and B are the coefficients to be determined. Then, the
y-component (Ey) of the electric field can be obtained as

Ey�

8>>><
>>>:

−α1
iωε0ε1

�Acos�kzd��B sin�kzd ��exp�−α1�z−d ��, z≥d ,
kz

iωε0εy
�−Asin�kzz��B cos�kzz��, 0≤z≤d ,

α3
iωε0ε3

Aexp�α3z�, z≤0:

(C6)

By matching the continuous boundary conditions of Ey and
Hx at the boundaries z � d and z � 0, one can obtain

M
�
A

B

�
�
0
@ −α3ε3

kz
εy

−α1ε1 cos�kzd��
kz
εy
sin�kzd �−α1ε1 sin�kzd �−

kz
εy
cos�kzd �

1
A

⋅
�
A

B

�
�0: (C7)

The determinant of M should equal zero, det M � 0; then,
the dispersion relation of hyperbolic PhPs can be obtained:

kzd � arctan

�
α1
ε1

εy
kz

�
� arctan

�
α3
ε3

εy
kz

�
� mπ: (C8)

It is Eq. (11). This dispersion relation can be expressed more
specifically asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20εy −
εyq2

εz

s
d � arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − k20ε1

p
ε1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εzεy

k20εz − q
2

r �

� arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − k20ε3

p
ε3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εzεy

k20εz − q
2

r �
� mπ:

(C9)

Funding. National Natural Science Foundation of China
(92050102, 11874311); National Key Research and
Development Program of China (2020YFA0710100);
Fundamental Research Funds for the Central
Universities (20720220033, 20720200074, 20720220134);
Shenzhen Science and Technology Program
(JCYJ20210324121610028); China Scholarship Council
(201906310019); Advanced Research and Technology
Innovation Centre (ARTIC), National University of
Singapore (A-0005947-16-00).

Acknowledgment. C.-W.Q. acknowledges the
Advanced Research and Technology Innovation Centre
(ARTIC), National University of Singapore for financial
support.

Disclosures. The authors declare no conflicts of interest.

Data Availability. The data that support the plots within
this paper and other findings of this paper are available from the
corresponding author upon reasonable request.

REFERENCES
1. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyper-

lens magnifying sub-diffraction-limited objects,” Science 315, 1686
(2007).

2. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X.
Zhang, “Optical negative refraction in bulk metamaterials of nano-
wires,” Science 321, 930 (2008).

3. Z. Jacob, J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and
V. M. Shalaev, “Engineering photonic density of states using meta-
materials,” Appl. Phys. B 100, 215–218 (2010).

4. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic meta-
materials,” Nat. Photonics 7, 948–957 (2013).

5. D. Lee, S. So, G. Hu, M. Kim, T. Badloe, H. Cho, J. Kim, H. Kim, C.-W.
Qiu, and J. Rho, “Hyperbolic metamaterials: fusing artificial structures
to natural 2D materials,” eLight 2, 1 (2022).

6. P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu,
J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyper-
bolic metasurface based on nanostructured van der Waals materials,”
Science 359, 892–896 (2018).

7. P. Li, G. Hu, I. Dolado, M. Tymchenko, C.-W. Qiu, F. J. Alfaro-Mozaz,
F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, S. Vélez, A. Alu, and R.
Hillenbrand, “Collective near-field coupling and nonlocal phenomena
in infrared-phononic metasurfaces for nano-light canalization,” Nat.
Commun. 11, 3663 (2020).

8. S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. Mcleod, M. K. Liu,
W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G.
Dominguez, A. H. C. Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero,

Research Article Vol. 10, No. 10 / October 2022 / Photonics Research B21

https://doi.org/10.1126/science.1137368
https://doi.org/10.1126/science.1137368
https://doi.org/10.1126/science.1157566
https://doi.org/10.1007/s00340-010-4096-5
https://doi.org/10.1038/nphoton.2013.243
https://doi.org/10.1186/s43593-021-00008-6
https://doi.org/10.1126/science.aaq1704
https://doi.org/10.1038/s41467-020-17425-9
https://doi.org/10.1038/s41467-020-17425-9


M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomi-
cally thin van der Waals crystals of boron nitride,” Science 343, 1125–
1129 (2014).

9. Z. Zheng, N. Xu, S. L. Oscurato, M. Tamagnone, F. Sun, Y. Jiang, Y.
Ke, J. Chen, W. Huang, W. L. Wilson, A. Ambrosio, S. Deng, and H.
Chen, “A mid-infrared biaxial hyperbolic van der Waals crystal,” Sci.
Adv. 5, eaav8690 (2019).

10. W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-
Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C.
Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S.-T. Lee,
R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss
polaritons in a natural van der Waals crystal,” Nature 562, 557–562
(2018).

11. F. Sun, W. Huang, Z. Zheng, N. Xu, Y. Ke, R. Zhan, H. Chen, and S.
Deng, “Polariton waveguide modes in two-dimensional van der Waals
crystals: an analytical model and correlative nano-imaging,”
Nanoscale 13, 4845–4854 (2021).

12. W. Ma, G. Hu, D. Hu, R. Chen, T. Sun, X. Zhang, Q. Dai, Y. Zeng, A.
Alù, C.-W. Qiu, and P. Li, “Ghost hyperbolic surface polaritons in bulk
anisotropic crystals,” Nature 596, 362–366 (2021).

13. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-
field imaging beyond the diffraction limit,”Opt. Express 14, 8247–8256
(2006).

14. A. Salandrino and N. Engheta, “Far-field subdiffraction optical micros-
copy using metamaterial crystals: theory and simulations,” Phys. Rev.
B 74, 075103 (2006).

15. A. S. Potemkin, A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Green
function for hyperbolic media,” Phys. Rev. A 86, 023848 (2012).

16. A. N. Poddubny, P. A. Belov, P. Ginzburg, A. V. Zayats, and Y. S.
Kivshar, “Microscopic model of Purcell enhancement in hyperbolic
metamaterials,” Phys. Rev. B 86, 035148 (2012).

17. G. Hu, Q. Ou, G. Si, Y. Wu, J. Wu, Z. Dai, A. Krasnok, Y. Mazor, Q.
Zhang, Q. Bao, C.-W. Qiu, and A. Alù, “Topological polaritons and
photonic magic angles in twisted α-MoO3 bilayers,” Nature 582,
209–213 (2020).

18. J. Duan, N. Capote-Robayna, J. Taboada-Gutiérrez, G. Álvarez-Pérez,
I. Prieto, J. Martín-Sánchez, A. Y. Nikitin, and P. Alonso-González,
“Twisted nano-optics: manipulating light at the nanoscale with twisted
phonon polaritonic slabs,” Nano Lett. 20, 5323–5329 (2020).

19. Z. Dai, G. Hu, G. Si, Q. Ou, Q. Zhang, S. Balendhran, F. Rahman,
B. Y. Zhang, J. Z. Ou, G. Li, A. Alù, C.-W. Qiu, and Q. Bao,
“Edge-oriented and steerable hyperbolic polaritons in anisotropic
van der Waals nanocavities,” Nat. Commun. 11, 6086 (2020).

20. K. Chaudhary, M. Tamagnone, X. Yin, C. M. Spägele, S. L. Oscurato,
J. Li, C. Persch, R. Li, N. A. Rubin, L. A. Jauregui, K. Watanabe, T.
Taniguchi, P. Kim, M. Wuttig, J. H. Edgar, A. Ambrosio, and F.
Capasso, “Polariton nanophotonics using phase-change materials,”
Nat. Commun. 10, 4487 (2019).

21. Z. Zheng, J. Jiang, N. Xu, X. Wang, W. Huang, Y. Ke, S. Zhang, H.
Chen, and S. Deng, “Controlling and focusing in-plane hyperbolic pho-
non polaritons in α-MoO3 with a curved plasmonic antenna,” Adv.
Mater. 34, 2104164 (2022).

22. J. Duan, G. Álvarez-Pérez, A. I. F. Tresguerres-Mata, J. Taboada-
Gutiérrez, K. V. Voronin, A. Bylinkin, B. Chang, S. Xiao, S. Liu,
J. H. Edgar, J. I. Martín, V. S. Volkov, R. Hillenbrand, J. Martín-
Sánchez, A. Y. Nikitin, and P. Alonso-González, “Planar refraction
and lensing of highly confined polaritons in anisotropic media,” Nat.
Commun. 12, 4325 (2021).

23. Y. Zeng, Q. Ou, L. Liu, C. Zheng, Z. Wang, Y. Gong, X. Liang, Y.
Zhang, G. Hu, Z. Yang, C. W. Qiu, Q. Bao, H. Chen, and Z. Dai,
“Tailoring topological transitions of anisotropic polaritons by interface
engineering in biaxial crystals,” Nano Lett. 22, 4260–4268 (2022).

24. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780
(2006).

25. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromag-
netic fields,” Science 312, 1780–1782 (2006).

26. J. B. Pendry, Y. Luo, and R. K. Zhao, “Transforming the optical land-
scape,” Science 348, 521–524 (2015).

27. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F.
Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at micro-
wave frequencies,” Science 314, 977–980 (2006).

28. H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, “Design
and experimental realization of a broadband transformation media
field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903
(2009).

29. C. Sheng, H. Liu, H. Chen, and S. Zhu, “Definite photon deflections of
topological defects in metasurfaces and symmetry-breaking phase
transitions with material loss,” Nat. Commun. 9, 4271 (2018).

30. I. I. Smolyaninov, E. Hwang, and E. Narimanov, “Hyperbolic meta-
material interfaces: Hawking radiation from Rindler horizons and
spacetime signature transitions,” Phys. Rev. B 85, 235122
(2012).

31. I. I. Smolyaninov and E. E. Narimanov, “Metric signature transitions in
optical metamaterials,” Phys. Rev. Lett. 105, 067402 (2010).

32. S. Fumeron, B. Berche, F. Santos, E. Pereira, and F. Moraes, “Optics
near a hyperbolic defect,” Phys. Rev. A 92, 063806 (2015).

33. S. Dehdashti, A. Shahsafi, B. Zheng, L. Shen, Z. Wang, R. Zhu, H.
Chen, and H. Chen, “Conformal hyperbolic optics,” Phys. Rev.
Res. 3, 033281 (2021).

34. J. L. Synge, “The absolute optical instrument,” Trans. Amer. Math.
Soc. 44, 32–46 (1938).

35. M. Born and E. Wolf, Principles of Optics (Cambridge University,
2006).

36. R. K. Luneburg, Mathematical Theory of Optics (University of
California, 1964).

37. U. Leonhardt and T. Philbin, Geometry and Light: The Science of
Invisibility (Courier, 2010).

38. A. Patsyk, U. Sivan, M. Segev, and M. A. Bandres, “Observation of
branched flow of light,” Nature 583, 60–65 (2020).

39. H. Gao, B. Zhang, S. G. Johnson, and G. Barbastathis, “Design of
thin-film photonic metamaterial Lüneburg lens using analytical ap-
proach,” Opt. Express 20, 1617–1628 (2012).

40. C. Joas and C. Lehner, “The classical roots of wave mechanics:
Schrödinger’s transformations of the optical-mechanical analogy,”
Stud. Hist. Philos. Mod. Phys. 40, 338–351 (2009).

41. G. Hu, A. Krasnok, Y. Mazor, C.-W. Qiu, and A. Alù, “Moiré hyperbolic
metasurfaces,” Nano Lett. 20, 3217–3224 (2020).

42. Z. Chen and M. Segev, “Highlighting photonics: looking into the next
decade,” eLight 1, 2 (2021).

43. Z. Chen, W. Zhou, B. Zhang, C. H. Yu, J. Zhu, W. Lu, and S. C. Shen,
“Realization of anisotropic diamagnetic Kepler problem in a solid state
environment,” Phys. Rev. Lett. 102, 244103 (2009).

44. W. Zhou, Z. Chen, B. Zhang, C. H. Yu, W. Lu, and S. C. Shen,
“Magnetic field control of the quantum chaotic dynamics of hydrogen
analogs in an anisotropic crystal field,” Phys. Rev. Lett. 105, 024101
(2010).

B22 Vol. 10, No. 10 / October 2022 / Photonics Research Research Article

https://doi.org/10.1126/science.1246833
https://doi.org/10.1126/science.1246833
https://doi.org/10.1126/sciadv.aav8690
https://doi.org/10.1126/sciadv.aav8690
https://doi.org/10.1038/s41586-018-0618-9
https://doi.org/10.1038/s41586-018-0618-9
https://doi.org/10.1039/D0NR07372E
https://doi.org/10.1038/s41586-021-03755-1
https://doi.org/10.1364/OE.14.008247
https://doi.org/10.1364/OE.14.008247
https://doi.org/10.1103/PhysRevB.74.075103
https://doi.org/10.1103/PhysRevB.74.075103
https://doi.org/10.1103/PhysRevA.86.023848
https://doi.org/10.1103/PhysRevB.86.035148
https://doi.org/10.1038/s41586-020-2359-9
https://doi.org/10.1038/s41586-020-2359-9
https://doi.org/10.1021/acs.nanolett.0c01673
https://doi.org/10.1038/s41467-020-19913-4
https://doi.org/10.1038/s41467-019-12439-4
https://doi.org/10.1002/adma.202104164
https://doi.org/10.1002/adma.202104164
https://doi.org/10.1038/s41467-021-24599-3
https://doi.org/10.1038/s41467-021-24599-3
https://doi.org/10.1021/acs.nanolett.2c00399
https://doi.org/10.1126/science.1126493
https://doi.org/10.1126/science.1126493
https://doi.org/10.1126/science.1125907
https://doi.org/10.1126/science.1261244
https://doi.org/10.1126/science.1133628
https://doi.org/10.1103/PhysRevLett.102.183903
https://doi.org/10.1103/PhysRevLett.102.183903
https://doi.org/10.1038/s41467-018-06718-9
https://doi.org/10.1103/PhysRevB.85.235122
https://doi.org/10.1103/PhysRevB.85.235122
https://doi.org/10.1103/PhysRevLett.105.067402
https://doi.org/10.1103/PhysRevA.92.063806
https://doi.org/10.1103/PhysRevResearch.3.033281
https://doi.org/10.1103/PhysRevResearch.3.033281
https://doi.org/10.1090/S0002-9947-1938-1501960-5
https://doi.org/10.1090/S0002-9947-1938-1501960-5
https://doi.org/10.1038/s41586-020-2376-8
https://doi.org/10.1364/OE.20.001617
https://doi.org/10.1016/j.shpsb.2009.06.007
https://doi.org/10.1021/acs.nanolett.9b05319
https://doi.org/10.1186/s43593-021-00002-y
https://doi.org/10.1103/PhysRevLett.102.244103
https://doi.org/10.1103/PhysRevLett.105.024101
https://doi.org/10.1103/PhysRevLett.105.024101

	XML ID funding

